DNA2 drives processing and restart of reversed replication forks in human cells
نویسندگان
چکیده
Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5'-to-3' polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.
منابع مشابه
A fresh start for stalled forks
Replication forks often run into obstacles, such as DNA damage or cross-links, that block their progress. Thangavel et al. (1) and Zellweger et al. (2) identify enzymes that enable cells to cope with these obstacles and resume replication. When replication forks encounter a roadblock, they often perform a maneuver called fork reversal (3). The newly synthesized strands detach from their parenta...
متن کاملReplication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1
Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at ...
متن کاملNucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability
Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analys...
متن کاملStabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe
Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/-...
متن کاملThe Intra-S Phase Checkpoint Targets Dna2 to Prevent Stalled Replication Forks from Reversing
When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete replication and cell death (Lopes et al., 2001; Sogo et al., 2002; Tercero and Diffley, 2001). Usi...
متن کامل